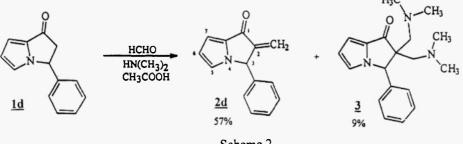

SYNTHESIS OF NEW PHENYLPYRROLIZINONES VIA A MANNICH REACTION

Centre d'Etudes et de Recherche sur le Medicament de Normandie U.F.R. des Sciences Pharmaceutiques 1. rue Vaubenard 14032 Caen FRANCE P.Sonnet, H.Miel, J.Guillon, P.Dallemagne and S.Rault^{*}.

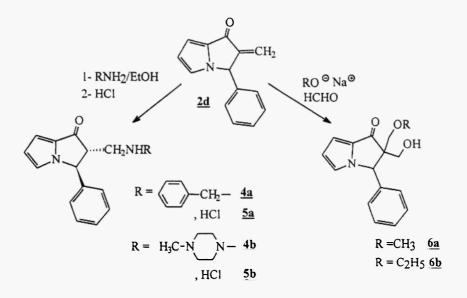
Abstract: The synthesis of 2-methylidene-3-phenyl-2,3-dihydro-1*H*-pyrrolizin-1-one 2d and subsequent Michael additions to this α,β -unsaturated ketone is described.

Introduction

In connection with our interest in chemical and biological properties of arylpyrrolizinones (1), we describe synthesis and reactivity of α,β -ethylenic ketone <u>2c-d</u> (Scheme 1). Gupta (2) and Muehlstaedt (3) described the synthesis of different 2-methylidenindan-1-ones <u>2a-b</u>. In a previous study we have synthesized the 2-methylidene-3-phenyl-indan-1-one <u>2c</u> via a Mannich reaction.



The substrate 3-phenyl-2,3-dihydro-1H-pyrrolizin-1-one Id (4) furnished 2-methylidene-3-phenyl-2,3dihydro-1H-pyrrolizin-1-one 2d. We also investigated synthesis of 2-aminoalkyl and 2-alkoxy-derivatives. Reactions of various primary and secondary amines with this Michael-type substrate lead to the desired aminoalkyl derivatives. Finally, an original route was developed for the synthesis of alcohol addition products.


Results and discussion

The α,β -ethylenic ketone 2d (5) was synthesized via a Mannich reaction. This compound 2d was obtained together with the bis(aminoalkyl) product 3 (Scheme 2).

Scheme 2

1,4-Addition of primary and secondary amines such as benzylamine or N-methylpiperazine to $\underline{2d}$ proceeded in ethanol, leading to the expected $\underline{4a}$ and $\underline{4b}$ products with yields ranging from 85 to 96% (Scheme 3). These products were isolated as hydrochlorides $\underline{5a}$ and $\underline{5b}$. Only the *trans* isomers were formed. The diastereoselectivity can be explained by steric factors.

Scheme 3

We have also developed an original and efficient one-pot synthesis of 2-alkoxypyrrolizinones <u>6a-b</u> starting from the α,β -unsaturated ketone <u>2d</u> (Scheme 3). The initial step is a 1,4-addition of an alcolate molecule to the unsaturated ketone <u>2d</u>, followed by a nucleophilic attack of the intermediate enolate on a molecule of formaldehyde.

Conclusion

We have designed the synthesis of the very useful synthon 2d. It has already been used for the synthesis of various original compounds, whose biological properties are under investigation.

References

(1) O.N.Tembo, P.Dallemagne, S.Rault and M.Robba, Heterocycles 9, 2129 (1993).

(2) R.C.Gupta, P.Nautiyal, A.G.Jhingran, V.P.Kamboj, B.S.Setty, N.Anand, Indian J.Chem., Sect.B., 20 (4), 303-307 (1981).

(3) M.Muehlstaedt, H.J.Gensrich, J.Prakt.Chem., 34, 139-144 (1966).

(4) a) M.P.Foloppe, P.Sonnet, I.Bureau, S.Rault and M.Robba, J.Heterocyclic Chem. <u>33</u>, 75 (1996).
b) M.P.Foloppe, P.Sonnet, S.Rault and M.Robba, Tetrahedron Lett. 36, 3127 (1995).

(5) ¹H NMR were recorded on a JEOL JNM-LA 400 spectrophotometer at 40°C. Compound <u>2d</u> (CDCl₃) δ : 7.2 (m, 5H, Ph); 6.84 (dd, ³J_{H-7} H-6 = 3.7 Hz, ⁴J_{H-7} H-5 = 1.1 Hz, 1H, H-7); 6.77 (dd, ³J_{H-5} H-6 = 2.2 Hz, ⁴J_{H-5} H-7 = 1.1 Hz, 1H, H-5); 6.45 (dd, ³J_{H-6} H-7 = 3.7 Hz, ³J_{H-6} H-5 = 2.2 Hz, 1H, H-6); 6.15 (d, ²J_{CH2} CH2 = 1.3 Hz, 1H, CH₂); 5.81 (s, 1H, H-3); 5.22 (d, ²J_{CH2} CH₂ = 1.3 Hz, 1H, CH₂).

Received on October 30, 1998